Evaluation of dopaminergic neuronal loss and synaptic changes in an α -synuclein overexpressing model of PD

<u>Pauline Roost</u>, Francesco Gubinelli, Pauline Gipchtein, Mylène Gaudin, Martine Guillermier, Noémie Cresto, Leopold Eymin, Charlène Josephine, Marie-Claude Gaillard, Alexis Bemelmans, Yann Bramoullé, Emmanuel Brouillet, Philippe Hantraye, Nadja Van Camp

Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction des Recherches Fondamentales (DRF), Institut de Biologie François Jacob, MIRCen, F-92260 Fontenay-aux-Roses, France and Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, UMR 9199, Neurodegenerative Diseases Laboratory, F-92260 Fontenay-aux-Roses, France

Introduction

Parkinson's disease (PD) is the second most common age-related neurodegenerative disorder, pathologically characterized by a loss of dopaminergic neurons in the substantia nigra (SN). The resulting dopamine deficiency in the striatum underlies some of the observed motor symptoms such as rigidity and tremor. A histopathological hallmark of PD is the presence of Lewy Bodies in the brain; aggregates containing, amongst others, misfolded α -synuclein protein[1]. In the present study, we aim to evaluate neuronal loss and synaptic compensation mechanisms in a rodent PD model that unilaterally over-expresses mutant (A53T) human α -synuclein, a missense mutation found in familiar cases of PD[2].

Materials & Methods

Two cohorts of rats (n_{total}=16) were unilaterally injected in the SN with AAV2/6 viral vector coding for mutated (A53T) human alpha-synuclein. Animals were evaluated at early (n=8;6-8 weeks post-injection (wpi)) or late time-point (n=8;10-12wpi). At both time-points, all animals underwent *in vivo* behaviour and PET imaging, and *post mortem* immunohistological and qPCR analysis.

PET imaging was performed using 6-[18F]fluoro-L-m-tyrosine [3](FMT) - a substrate for AADC, and [18F]-LBT999 [4](LBT) - a radioligand for dopamine transporter (DAT). AADC enzymatic rate (Ki) and DAT binding (BP_{ND}) were calculated using Patlak and Logan graphical methods respectively, employing the cerebellum as a reference region. For behavioural analysis, rats were subjected during 5 minutes to the cylinder test, in which contralateral and ipsilateral paw use was compared. After the *in vivo* studies, rats were sacrificed for histological studies using tyrosine hydroxylase immunohistochemistry, and biochemical analyses using qPCR. Paired student t-tests were used to compare the contra- and ipsilateral sides in imaging studies, while an ANOVA was used to compare contralateral paw use to a control group.

Results

The cylinder test revealed a clear motor deficit at both the early (-37%;n=7;p=0.025) and the late time-point (-35%;n=8;p=0.032). FMT-PET imaging did not reveal any significant differences in AADC enzymatic activity in the striatum at either time-point, nor did we observe a difference in AADC mRNA levels in the SN. In contrast, we observed a significant asymmetry in DAT binding in both the early (-

26%;n=6;p=0.027) and the late cohort (-42%;n=4;p=0.003). However we only demonstrated a significant left/right difference in DAT mRNA levels in the SN (-25%;n=5/6;p=0.01) and DAT protein levels in the striatum (-26%;n=8;p=0.005) at the late time-point.

Finally, we demonstrated significant dopaminergic cell loss in the SN with TH stereology in both the early (-14%;n=6;p=0.013) and late cohort (-28%;n=8;p=0.009), and a significant TH protein loss in the striatum at the late time-point (-33%;n=8;p=0.038).

Discussion/Conclusions

Based on behavioural data, and compared with previous studies on a complete lesion PD model, the AAV2/6-A53T model shows mild progressive neuronal loss between the early and late time-point. However, we were not able to confirm the dopaminergic neuronal loss using an *in vivo* PET marker of AADC enzymatic, neither were we able to demonstrate any evidence of AADC compensation mechanisms, as previously suggested in the literature[5]. Although our DAT binding at the early time-point was greater than neuronal loss measured with stereology, we were not able to demonstrate any compensation effect of DAT by *post-mortem* data. However, this compensation effects were evident at the late time-point, as previously suggested by Lee *et al.*[6]. Future research will have to unveil whether these compensation effects occur at the ipsilateral and/or contralateral synapse. Mild progressive PD models liked used in this study, unlike full lesion models, will allow to study compensatory mechanisms, and could give us new information about PD pathology.

Acknowledgements

This project has been funded by the European Union Horizon 2020 Programme (H2020-MSCA-ITN-2015) under the Marie Skłodowska-Curie Innovative Training Network and Grant Agreement No. 676408, and a short-term grant from France Parkinson.

References

- [1] M. G. Spillantini, M. L. Schmidt, V. M.-Y. Lee, J. Q. Trojanowski, and M. Goedert, Ross Jakes, "a-Synuclein in Lewy bodies," *Nature*, vol. 388, no. 28, pp. 839–840, 1997.
- [2] M. H. Polymeropoulos *et al.*, "Mutation in the α -Synuclein Gene Identified in Families with Parkinson's Disease Mutation in the __ -Synuclein Gene Identified in Families with Parkinson's Disease," *Science (80-.).*, vol. 276, no. June, pp. 2045–2047, 1997.
- [3] G. Becker *et al.*, "Comparative assessment of 6-[18F]fluoro-L-m-tyrosine and 6-[18F]fluoro-L-dopa to evaluate dopaminergic presynaptic integrity in a Parkinson's disease rat model," *J. Neurochem.*, 2017.
- [4] S. Sérrière *et al.*, "In vivo PET quantification of the dopamine transporter in rat brain with [18F]LBT-999," *Nucl. Med. Biol.*, vol. 41, no. 1, pp. 106–113, Jan. 2014.
- [5] V. Kaasinen and T. Vahlberg, "Striatal dopamine in Parkinson disease: A meta-analysis of imaging studies," *Annals of Neurology*. 2017.
- [6] C. S. Lee *et al.*, "In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson's disease," *Ann. Neurol.*, vol. 47, no. 4, pp. 493–503, 2000.